On a Monge-ampère Type Equation in the Cegrell

نویسنده

  • RAFA L CZYŻ
چکیده

We prove an existence and uniqueness result for a Monge-Ampère type equation in the Cegrell class Eχ.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The General Definition of the Complex Monge-Ampère Operator on Compact Kähler Manifolds

We introduce a wide subclass F(X,ω) of quasi-plurisubharmonic functions in a compact Kähler manifold, on which the complex Monge-Ampère operator is well-defined and the convergence theorem is valid. We also prove that F(X,ω) is a convex cone and includes all quasi-plurisubharmonic functions which are in the Cegrell class.

متن کامل

The Monge-ampère Equation and Its Link to Optimal Transportation

We survey old and new regularity theory for the Monge-Ampère equation, show its connection to optimal transportation, and describe the regularity properties of a general class of Monge-Ampère type equations arising in that context.

متن کامل

The General Solution of the Complex Monge-Ampère Equation in a space of arbitrary dimension

A general solution to the Complex Monge-Ampère equation in a space of arbitrary dimensions is constructed.

متن کامل

The General Solution of the Complex Monge-Ampère Equation in two dimensional space

The general solution to the Complex Monge-Ampère equation in a two dimensional space is constructed.

متن کامل

On the Integrability of a Class of Monge-Ampère Equations

We give the Lax representations for for the elliptic, hyperbolic and homogeneous second order Monge-Ampère equations. The connection between these equations and the equations of hydrodynamical type give us a scalar dispersionless Lax representation. A matrix dispersive Lax representation follows from the correspondence between sigma models, a two parameter equation for minimal surfaces and Mong...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009